Search results for "Bochner space"
showing 5 items of 5 documents
On some parameters related to weak noncompactness in L1(μ,E)
2009
Abstract A weak measure of noncompactness γU is defined in a Banach space in terms of convex compactness. We obtain relationships between the measure γU (A) of a bounded set A in the Bochner space L1 (μ,E) and two parameters Π(A) and Δ1(A). Then the criterion for relative weak compactness due to Ulger [19] and Diestel-Ruess-Schachermayer [11] is recovered.
An integral for a banach valued function
2009
Abstract Using partitions of the unity ((PU)-partition), a new definition of an integral is given for a function f : [a, b] → X, where X is a Banach space, and it is proved that this integral is equivalent to the Bochner integral.
Asymptotic Equivalence of Difference Equations in Banach Space
2014
Conjugacy technique is applied to analysis asymptotic equivalence of nonautonomous linear and semilinear difference equations in Banach space.
On set-valued cone absolutely summing maps
2009
Spaces of cone absolutely summing maps are generalizations of Bochner spaces Lp(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We …
VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE
2003
Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…