Search results for "Bochner space"

showing 5 items of 5 documents

On some parameters related to weak noncompactness in L1(μ,E)

2009

Abstract A weak measure of noncompactness γU is defined in a Banach space in terms of convex compactness. We obtain relationships between the measure γU (A) of a bounded set A in the Bochner space L1 (μ,E) and two parameters Π(A) and Δ1(A). Then the criterion for relative weak compactness due to Ulger [19] and Diestel-Ruess-Schachermayer [11] is recovered.

Discrete mathematicsMathematics (miscellaneous)Compact spaceBounded setBochner integralRegular polygonBanach spaceBochner spaceMeasure (mathematics)MathematicsQuaestiones Mathematicae
researchProduct

An integral for a banach valued function

2009

Abstract Using partitions of the unity ((PU)-partition), a new definition of an integral is given for a function f : [a, b] → X, where X is a Banach space, and it is proved that this integral is equivalent to the Bochner integral.

Discrete mathematicsBanach valued function (PU)-partition (PU)*-integral Bochner-integralGeneral MathematicsInfinite-dimensional vector functionBochner integralRiemann–Stieltjes integralRiemann integralBochner spaceExponential integralsymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsPaley–Wiener integralDaniell integralMathematicsTatra Mountains Mathematical Publications
researchProduct

Asymptotic Equivalence of Difference Equations in Banach Space

2014

Conjugacy technique is applied to analysis asymptotic equivalence of nonautonomous linear and semilinear difference equations in Banach space.

Mathematics::Functional AnalysisPure mathematicsMathematics::Dynamical SystemsApproximation propertyInfinite-dimensional vector functionEberlein–Šmulian theoremMathematics::Analysis of PDEsBanach spaceBanach manifoldBochner spaceMathematics::Group TheoryNonlinear Sciences::Exactly Solvable and Integrable SystemsConjugacy classC0-semigroupMathematics
researchProduct

On set-valued cone absolutely summing maps

2009

Spaces of cone absolutely summing maps are generalizations of Bochner spaces Lp(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We …

Discrete mathematicsGeneral MathematicsBanach spaceBochner spaceSpace (mathematics)Measure (mathematics)Separable spaceCombinatoricsBanach lattice Bochner space Cone absolutely summing operator Integrably bounded set-valued function Set-valued operatorNumber theoryCone (topology)Settore MAT/05 - Analisi MatematicaBounded functionMathematicsCentral European Journal of Mathematics
researchProduct

VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE

2003

Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…

Discrete mathematicsPure mathematicsSquare-integrable functionBergman spaceFunction spaceInfinite-dimensional vector functionBochner spaceLp spaceQuotient space (linear algebra)Complete metric spaceMathematicsFunction Spaces
researchProduct